Neural Machine Translation from Simplified Translations
نویسندگان
چکیده
Text simplification aims at reducing the lexical, grammatical and structural complexity of a text while keeping the same meaning. In the context of machine translation, we introduce the idea of simplified translations in order to boost the learning ability of deep neural translation models. We conduct preliminary experiments showing that translation complexity is actually reduced in a translation of a source bi-text compared to the target reference of the bi-text while using a neural machine translation (NMT) system learned on the exact same bi-text. Based on knowledge distillation idea, we then train an NMT system using the simplified bi-text, and show that it outperforms the initial system that was built over the reference data set. Performance is further boosted when both reference and automatic translations are used to learn the network. We perform an elementary analysis of the translated corpus and report accuracy results of the proposed approach on English-to-French and English-to-German translation tasks.
منابع مشابه
The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language
Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...
متن کاملA Program for Automatically Selecting the Best Output from Multiple Machine Translation Engines
This paper describes a program that automatically selects the best translation from a set of translations produced by multiple commercial machine translation engines. The program is simplified by assuming that the most fluent item in the set is the best translation. Fluency is determined using a trigram language model. Results are provided illustrating how well the program performs for human ra...
متن کاملReinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback
Machine translation is a natural candidate problem for reinforcement learning from human feedback: users provide quick, dirty ratings on candidate translations to guide a system to improve. Yet, current neural machine translation training focuses on expensive human-generated reference translations. We describe a reinforcement learning algorithm that improves neural machine translation systems f...
متن کاملVisualizing Neural Machine Translation Attention and Confidence
In this article, we describe a tool for visualizing the output and attention weights of neural machine translation systems and for estimating confidence about the output based on the attention. Our aim is to help researchers and developers better understand the behaviour of their NMT systems without the need for any reference translations. Our tool includes command line and web-based interfaces...
متن کاملMaster Thesis Analysis of the Effects of Japanese-Chinese Machine Translation with Kanji/Simplified Chinese Conversion
Currently, most Japanese-Chinese machine translations use English as an intermediary language. Because of lack of enough Japanese-Chinese bilingual dictionaries, there is less precise in Japanese-Chinese machine translation than Japanese-English or Chinese-English machine translations. In order to make translations smooth and adequate, it is necessary and efficient for native people to modify t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1612.06139 شماره
صفحات -
تاریخ انتشار 2016